Comparison of temporal and unresolved spatial variability in multiyear time-averages of air temperature

نویسندگان

  • Scott M. Robeson
  • Michael J. Janis
چکیده

When compiling climatological means of air temperature, station data usually are selected on the basis of whether they exist within a fixed base period (e.g. 1961 to 1990). Within such analyses, station records that do not contain sufficient data during the base period or only contain data from other base periods are excluded. If between-station variability is of interest (e.g. a map or gridded field is needed), then removing such stations assumes that spatial interpolation to the location of culled stations is more reliable than using a temporal mean from a shorter or different averaging period—the latter is a process that we call ‘temporal substitution.’ Data from the United States Historical Climate Network (HCN) are used to examine whether spatial interpolation or temporal substitution is more reliable for multiyear averages of monthly and annual mean air temperature. After exhaustively sampling all possible 5-, 10-, and 30-yr averaging periods from 1921 to 1994, spatially averaged interpolation and substitution errors are estimated for all months and for annual averages. For all months, temporal substitution produces lower overall error than traditional spatial interpolation for both 10and 30-yr averages. Maps of mean absolute error (for all averaging periods) show that spatial interpolation errors are largest in mountainous regions while temporal substitution errors are largest in the northcentral and eastern USA, especially in winter. A spatial interpolation algorithm (topographically aided interpolation, TAI) that incorporates elevation data reduces interpolation error, but also produces larger errors than temporal substitution for all months when using 30-yr averages and for all months except January, February, and March when using 10-yr averages. For 5-yr averages, however, TAI produces lower errors than temporal substitution, especially in winter. For the USA, therefore, it is suggested that for averaging periods less than 10 yr in length, elevation-aided spatial interpolation is preferable to temporal substitution. Conversely, for averaging periods longer than 10 yr in length, temporal substitution is preferable to spatial interpolation. Analysis of the 1961 to 1990 period using a wide range of network densities demonstrates that temporal substitution generally is more reliable than spatial interpolation of 30-yr averages, regardless of network density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term spatial and temporal variability of ambient carbon monoxide in Urmia, Iran

One of the pillars of epidemiologic research on the long-term health effects of air pollution is to estimate the chronic exposures over space and time. In this study, we aimed to measure the intra-urban ambient carbon monoxide (CO) concentrations within Urmia city in Iran, and to build a model within the geographic information system (GIS) to estimate the annual and seasonal means anywhere with...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

Determination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City

Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...

متن کامل

Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain

Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...

متن کامل

Temporal-Spatial Variability of the Severest Dry Spells in the North-West of Iran

The variability of temperature and precipitation is regarded as one of the main characteristics of the climate.Precipitation and its results, especially results such as droughts, vary on different temporal and spatial scales. Thepurpose of this paper is to determine the frequency of the inter-annual variability of the driest month in north-westIran. In order to obtain the best results, we used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998